Salespoint 5

Technical Reference

Version 1

Christopher Bellmann, Thomas Dedek, Stanley Forster,
Paul Henke, Hendrik Neubert, Hannes Weisbach

3rd April 2012

Technische Universitat Dresden
Department of Computer Science
Institute of Software- and Multimedia-Technology
Software Technology Group

Address Telephone: 0351 463 38442
Department of Computer Science Fax: 0351 463 38459
Insitute of Software and Multimedia Technology birgit.demuth@tu-dresden.de
TU Dresden http://tu-dresden.de

01062 Dresden

Contents

Technical Background|

|2,1 ;II A = ;la&a I QISIS!Q“S:Q AI Il

DTING| . .« v v v v v et e e e e e e e e e e e e e e e e e e e
[2.4 Software Architecture of a Salespoint 5 Application|.
[2.5 General Design Aspects| oL

Salespoint 5 Components|

3.1 Shop| e

3.6 Catalogl
3.7 Inventory|
3.8 Accountancy|

© © 0w 3N

10

15
15
17
18
20
24
26
27
28
30

33

34

List of Figures

2.1 Overview of a Salespoint 5 application. 9
[2.2 Layers of a Salespoint 5 application.] 10
[2.3 Example for a type hierarchy|o 00000 13
[3.1 Package Overview| L o 16
[3.2 Shop - Class Overview| i 17
3.3 User - Class Overviewl v v 18
8.4 Calendar - Class Overviewl. o v, 19
[3.5 Quantity - Class Overview|. 20
[3.6 Money - Class Overview| 24
8.7 Product - Class Overview| 25
[3.8 Catalog - Class Overview| 27
[3.9 Inventory - Class Overview|] 28
[3.10 Accountancy - Class Overview| 29
[3.11 Payment - Class Overview| 29
3.12 Order - Class Overview] 31
[3.13 Order - Lifecyclel 32

List of Tables

1 Preface

1.1 Typographic Conventions

Two typographic conventions are employed throughout this document to highlight
specific phrases. The following paragraphs describe when and why these highlightings
are used:

Mono-spaced Blue

The mono-spaced, blue font is used to denote variable names, class names, type
names, java keywords, java package names, and so forth.

Proportional Italic

Proper names and termini are printed in proportional, italic font.

1.2 Introduction

The Salespoint Framework is intended to minimize developing effort of point-of-sale
applications. Salespoint 2010 users complained about complexity, missing features and
bugs. Thus, the decision was made to re-design and re-implement the framework from
scratch. Our development goal was an easy-to-use framework primarily targeted for
educational purposes. As such, Salespoint 5 is not taylored to any specific application,
but designed with a wide area of applications in mind.

Models and design patterns employed in Salespoint 5 are inspired by “Enterprise
Patterns and MDA: Building Better Software with Archetype Patterns and UML” by
Jim Arlow [ANO3]. An overview of the functionality of and new features in Salespoint 5
are detailed in this document.

We would like to thank all Salespoint users who submitted their feedback and encour-
age future users of Salespoint 5 to do the same.

2 Technical Background

One of the main reason to use a framework such as Salespoint for educational purposes is
to teach students reusability. The Salespoint 5 developers also adhere to that principle.
Thus, Salespoint 5 itself uses a number of frameworks and APIs, which are introduced
briefly. The software architecture of Salespoint 5 applications is also detailed.

2.1 JPA - Java Persistence API

One of the key features of Salespoint 5 is its integrated persistence layer. The goal is
to allow data persistence, while minimising programming effort and training period as
well as maximising flexibility for framework users.

The obvious choice was the Java Persistence API (JPA), a Java framework managing
relational data in Java Standard Edition or Enterprise Edition applications. Salespoint 5
uses JPA 2.0, developed under JSR 317 and finalised in Dec, 2009 [jpa].

Additionally to the API itself, which is defined in the javax.persistence package,
JPA also consists of Persistence Entities, ORM Metadata and the Java Persistence
Query Language (JPQL).

A persistence entity is usually a Plain Old Java Object (POJO), which is mapped to
a single table in a database. A row in such a database table corresponds to a specific
instance of such an entity. Relational data between entities (and therefore tables) may
be specified in an XML descriptor file or as annotations in Java source code. Salespoint 5
uses annotations to provide object/relational metadata.

Persistence entities may be related to each other by an inheritance hierarchy. A
persistence entity may have a non-persistent superclass. Fields declared by a non-
persistent superclass are not stored in the database if an inheriting entity is persisted.
Three schemes exist to persist entites with an inheritance relationship: single table, join
table, and table per class.

The single table strategy stores all instances of classes of an inheritance hierarchy in
the same table. The table contains columns for every attribute a persistence entity in
the hierarchy declares. The different types are distinguished by a type discriminator
column. The discriminator value for each persistence entity in an inheritance hierarchy
is generated automatically or can be supplied by the user.

The join table strategy uses a table for the root persistence entity of the inheritance
hierarchy. Additionally, a table is addded for each persistence entity in the inheritance
hierarchy. In the supplementary tables, a foreign key is used to reference a row in
the table of the parent persistence entity. Each table contains only columns for fields
declared by a specific persistence entity in the inheritance hierarchy, but neither for the
entities children nor parents. To reconstruct an object from the database, the different
tables have to be joined using this foreign key, thus the name of this strategy.

2 Technical Background

The table per class strategy creates a table for each persistence entity containing all
fields of the class, including inherited fields.

The inheritance strategy of an inheritance hierarchy has to be declared at the root
persistence entity. The inheritance stratety may not be changes for a sub-hierarchy,
because JPA 2.0 does not require this feature. JPA 2.0 only requires the single table
and join table strategies to be implemented. Salespoint 5 uses the single table strategy
exclusively.

The query language JPQL, which is similar to SQL, is used to retrieve entity informa-
tion from the database. In contrast to SQL, JPQL queries act on entity objects instead
of database tables. JPA implementations translate a JPQL statement to SQL state-
ments at run time. It is possible to replace the DBMS while keeping the Java classes.
It is possible to interface directly with the DBMS using Native Queries. Salespoint 5
however, uses the Criteria API [jpa, lecla] to facilitate type safe querying.

Multiple implementations of JPA 2.0 exist, for example TopLink [top] and EclipseLink
[ecIb]. The open source persistence and ORM framework Hibernate [hib] also supports
JPA 2.0. Salespoint 5 uses the JPA 2.0 reference implementation, EclipseLink. No
implementation specific code is used in Salespoint 5, therefore it should be possible to
interchange EclipseLink with another JPA 2.0 implementationE]

2.2 Joda Time

Joda Time [jod] is a Java date and time API. It provides a quality replacement for the
Java date and time classes. Salespoint 5 incorporates Joda Time, because it is open
source, easy to use and offers better performance characteristics than Java date and
time classes.

Key concepts from Joda Time used in Salespoint 5 are Instant, Interval, Duration
and Period. Instant is explained in the Joda Time documentation as follows:

The most frequently used concept in Joda-Time is that of the instant. An
Instant is defined as an instant in the datetime continuum specified as a num-
ber of milliseconds from 1970-01-01T00:00Z. This definition of milliseconds
is consistent with that of the JDK in Date or Calendar. Interoperating
between the two APIs is thus simple.

An Interval is defined by two Instants, the start and the end. An Interval is half-open,
that is to say the start is inclusive but the end is not. The end is always greater or equal
than the start.

A Duration in Joda Time represents a duration in time, exact to the milisecond.
Durations can be thought of as length of an Interval. A Duration does not have a start
and an end, but is rather the difference end — start.

A Period also represents a duration in time, but in a more abstract way. A Period may
be a month, which may have 28, 29, 30 or 31 days. The absolute length in miliseconds
of those periods differ.

!This document will be updated, as soon as another JPA provider is tested with Salespoint 5.

2.3 Spring

If you, for example have an Instant of February, 1st and add a Period of one month,
the result will be an Instant of March, 1st. Adding instead a Period of 30 days to an
Instant of February, 1st will result in an Instant of March, 2nd or March 3rd, depending
if the Instant is in a leap year or not.

2.3 Spring

In contrast to earlier versions of the Salespoint Framework, Salespoint 5 obeys the MVC
pattern. Salespoint 5 can be seen as the Model of an MVC application, no parts of the
View or the Controller are implemented in the Framework.

Salespoint 5 is designed as basis for development of web applications, using the Spring
Framework [spr] to implement Views and Controllers. To further ease the develop-
ment, Salespoint 5 includes property editors to convert string based representations to
Salespoint 5 identifier types. Furthermore, JSP tags to check if a user is logged in and
if a user has a certain capability are included in the framework.

2.4 Software Architecture of a Salespoint 5 Application

Software often need to be adaptive, flexible, and extendable. Using a suitable archi-
tecture pattern, such as the Model-View-Controller pattern, helps to meet these non-
functional requirements. Figure gives an overview of how a Salespoint 5 application
is modelled. Salespoint 5, as domain framework, takes the place of the model in the
MVC pattern. The model can be extended by sub-classing Salespoint 5 classes or by
introducing entirely new classes. Salespoint 5 model classes and sub-classes thereof are
transparently stored in a database. If new classes are added to the model and their
state is also required to be persistent, the developer also has to facilitate persisting
those objects using the JPA-API.

Controller

(application code)

View [Model
(application code) (Salespoint 5)

JPA

Datenbank

Figure 2.1: MVC-pattern of a Salespoint 5 application divided into application specific
code (red) and framework code (blue).

The controller and view are application-specific and have to be implemented by
the user. Although Salespoint 5 does not require a specific framework or API like

2 Technical Background

Swing [swi] or SWT [swf]. However, because Salespoint 5 is intended to be used in
conjunction with the Spring MVC [spr] framework for SWP at TU Dresden, Salespoint 5
contains supplementary code, easing the development of Spring applications. This sup-
plementary code consists of Spring MVC PropertyEditors, and custom, Salespoint 5
specific JSP-tags.

Salespoint 5 Application

Application-specific,

Salespoint 5 Framework | Persisent classes

JPA Provider (e.g. EclipseLink)
JDBC Driver
Database (e.g. MySQL)

Figure 2.2: Layers of a Salespoint 5 application.

A layered view of the software architecture of a Salespoint 5 application is shown
in Figure 2.2 The bottom layer corresponds to a DBMS, chosen by the developer.
As stated in Section JPA works with every DBMS for which a JDBC driver is
available. The JPA provider, which is also chosen by the developer, interfaces with the
JDBC driver and Salespoint 5. Salespoint 5 in turn uses a class library, namely Joda
Time [jod], to deal with dates and times.

2.5 General Design Decisions and Aspects of Salespoint 5

This chapter summarises design decisions and aspects common to all Salespoint 5 sub-
section and details, why those decisions were made.

2.5.1 Notes on Interfaces ..

Integrating a persistence layer into the Salespoint 5 Framework had a great impact
on some design decisions made during the development of Salespoint 5. Early on it
became obvious that necessities of JPA could dictate the design and implementations
of Salespoint 5.

To guard against JPA requirements influencing design decisions, Salespoint 5 strongly
follows the programming against interfaces programming style. Although, creating an
interface for almost every class violates the KISS (Keep it simpe, Stupid! Also, a hard-
rock band.) principle, the developers deemed programming against interfaces necessary
because Salespoint 5 is intrinsically tied to JPA. Using interfaces allowed us to cleanly
define the behaviour of an object, without relying on a specific implementation. The
classes itself are, however, not programmed against interfaces. Salespoint 5 usually just

2continued in the next sub-section

10

2.5 General Design Aspects

implement interfaces, but refer to other classes directly. The reason for this violation
of the programming against interfaces paradigm is the generic typing, which would be
required, if Salespoint 5 classes would refer to interfaces instead of concrete classes.
For example, the PersistentOrder class would require three (cascaded) generic type
parameters alone. As a consequence, Salespoint 5 classes refer to each other directly,
instead of interface types.

2.5.2 ... implementing Classes, and Namingf|

Objects, which need to be persisted to safe the current state of an application, are
called persistence entities. Usually, a persistence entity is a Plain Old Java Object
(POJO). However, Java interfaces are used to separate behaviour and implementa-
tion. An interface defines only the behaviour of an object. Every persistence entity
class is an implementation of a corresponding Java interface, to avoid JPA require-
ments to impact on design decision and, for example, influence the Salespoint 5 API.
Each persistence entity has an aggregating class, which also implements an interface.
The interface of an aggregating class specifies its API, but not implementation de-
tails. Aggregating classes and their respective interfaces are also called manager classes
(interfaces), for example UserManager and OrderManager. Sometimes, class and in-
terface names deviate from this naming scheme, for example Calendar, Inventory
or Accountancy. The reason for this break in naming scheme is clarity: because a
Calendar aggregates CalendarEntrysEl, its name according to the scheme would be
CalendarEntryManager. Everybody knows what a Calendar is for, but not necessarily
what a CalendarEntryManager does. Therefore, a more descriptive name was chosen.
The specific manager implementations included Salespoint 5 facilitate storing objects
to a database. However, an implementation based on Java collections rather than a
database is entirely possible.

2.5.3 Why Salespoint 5 is so developer-friendly

Salespoint 5 is designed to be developer-friendly. A crucial part of its easy-to-use feeling
is the consistency of interfaces, persistence entities and managers across the framework,
including, but not limited to the naming of methods and behaviour of managers. All
aggregating classes share a set of methods, namely add, get, contains, remove and
find. The methods have the same semantics on every manager and have a similar
method signature. Concise method names speed up development by reducing typing
overhead. Instead of having an addUser method for the user manager or an addOrder
method for the order manager, all managers have a method just named add. Consistency
in the API is achieved by similar method signature. Consider the get method: it takes
only one parameter which is an identifier. The precise type of the identifier is easily
guessed: the order manager requires an OrderIdentifier and the Accountancy an

3started at the preceeding sub-section

4 The correct plural form would be CalendarEntries, which is not a type name. The form
”CalendarEntrys” is used to support full text search. Futhermore, ”CalendarEntrys” should be
read as ”"CalendarEntry objects” or ”"objects of the type CalendarEntry”

11

2 Technical Background

AccountancyEntryIdentifier. The name of the identifier type is derived from the
name of class which is aggregated by the manager. This consistency allows a developer
to use an unknown manager, when he is familiar with another manager.

Salespoint 5 does not contain checked exceptions, thus avoiding “the handcuffs they
put on programmers” [HVE].

In Java 1.5 a new interface was introduced, the Iterable interface. The Iterable
is implemented by classes, which aggregate objects and allow to iterate over those ob-
jects. The well known Collection interface is now a sub-interface of Iterable. An
object implementing the Iterable interface is immutable in contrast to sub-interfaces
of Collection, for example the List interface. Iterables are easy to handle, because
compiler support to use the foreach construct is available. Also, there is no reason for
a programmer to touch an iterator by himself because it is not idiomatic language use.

In Salespoint 5 Tterables are return on find () methods. Having an Iterable signals
the developer, that he may not modify the object. Although an Iterable may be
converted to a List or Set, changes to the resulting object, are not reflected in the
original Iterable object. Thus, it has to be noted, that objects cannot be added by
modifying a Salespoint 5 return value. The proper add () or addA11 () methods have to
be used.

2.5.4 Type-based queries in JPA

The get() and find() methods of aggregating classes in Salespoint 5 have a type
parameter of Class<E>. The type E is a sub-class of type T, the generic type para-
meter of the interface. For example, the Catalog interface is generically typed to
<T extends Product>, where Product is an interface itself. The complete type is thus
Catalog<T extends Product>. PersistentCatalog implements the generic Catalog
interface with Catalog<PersistentProduct>. Thus, PersistentCatalog aggregates
instances of PersistentProduct or sub-classes thereof.

When Catalog is queried for Products using the get () and find () methods, a type
parameter has to be supplied. This type parameter has two purposes: first, it ensures
type-safety, and second it narrows the result set.

When a certain type, for example T extends PersistentProduct, is requested from
an aggregating class, let’s say the PersistentCatalog, the return type is T for the get ()
method and Iterable<T>E| for the find() method. Thus, the return type depends
on the request-type and is not a static type, for example PersistentProduct. The
dependency of the return type on the requested type avoids type casts, which can fail
at run-time and therefore increases type-safety. Because JPA is aware of persistence
entities types, the result is always of the correct type, or empty, if no matching object
could be found.

The result set determined by the requested type, because the type parameter does
not request a specific type, but rather has instanceof behaviour. That means, a type
parameter does not only match to objects of the same type, but also all objects which
have the type of a sub-class of the requested type. It does not match super-classes of the

5More on Iterables in sub-section m

12

2.5 General Design Aspects

PersistentAccountancyEntry

I

ProductPaymentEntry FooEntry

BarEntry

Figure 2.3: Exemplary class hierarchy of PersistentAccountancyEntrys.

requested type. The VideoShop—tutoriaﬁ is an example of how this functionality can be
used. The VideoCatalog extends PersistentCatalog. By using the type parameters
Dvd.class and BluRay.class, it requires only one line of code to find all products of
a certain kind (type).

PersistenceAccountancyEntry.class matches all class types.

Consider Figure 2.3] for another example, explaining the instanceof semantics.
PersistentAccountancy aggregates PersistentAccountancyEntrys and sub-classes
thereof. Omne sub-class is already supplied by Salespoint 5: ProductPaymentEntry.
ProductPaymentEntrys are automatically created, if an order is completed.

If ProductPaymentEntry.class is supplied as type parameter, only objects of type
ProductPaymentEntry would be returned, if any. Using FooEntry.class as type para-
meter would return objects of type FooEntry and objects of type BarEntry, if any.

Shttp://www.st.inf.tu-dresden.de/SalesPoint/v5.0/wiki/index.php/VideoShop

13

http://www.st.inf.tu-dresden.de/SalesPoint/v5.0/wiki/index.php/VideoShop

3 Salespoint 5 Components

Figure depicts the package structure of Salespoint 5. Salespoint 5 components
are grouped into packages according to their respective functionality. Key concepts of
Salespoint 5 are illustrated in the following paragraphs, whose structure closely follows
the package structure of Salespoint 5 core package.

3.1 Shop

Shop is a central class in Salespoint 5; it holds references to all manager interfaces and a
reference to the Time interface. There are six manager interfaces and interfaces aggregat-
ing (persistent) objects in Salespoint 5: Accountancy, Calendar, Catalog, Inventory,
OrderManager and UserManager. Other classes use the Shop to access the manager in-
terfaces, for example Order.completeOrder () uses Shop.INSTANCE.getInventory()
for product removal. PersistentCalendar uses Shop.INSTANCE.getTime() for time
based operations. There is also a convenience method to minimize boilerplate codeﬂ
Shop.initializeShop(); it is used for setting all managers of Shop to Salespoints per-
sistent class implementations and the time to DefaultTime. This behaviour is also
known as convention over configuration, which means reasonable default values are sup-
plied, eliminating the need to explicitly specify those values in most cases. Shop is
implemented as a singleton.

Although Shop holds references to all managers and aggregating classes (see Sec-
tion , persistent implementations do not need to be singletons and are infact not.
Moreover, a peculiarity of all managers and aggregating classes is, that a new instance
can be created whenever one is needed. The reason for this behaviour is, that data is
not stored inside the manager object itself, as it may be done with a collection-based
implementation, but the manager class is merely a transparent interface to the JPA
and database.

! It was mentioned to us, that boilerplate code may also be called infrastructure code. We disagree,
because we consider configuration files, (startup-) scripts, deployment scripts, etc infrastructure code.
Wikipedia defines boilerplate code as follows:

In computer programming, boilerplate is the term used to describe sections of code that
have to be included in many places with little or no alteration. It is more often used when
referring to languages which are considered verbose, i.e. the programmer must write a lot
of code to do minimal jobs.

15

3 Salespoint 5 Components

1
core
shop
T === == s s g o ey =2 e S S e e e ‘
| | |
|
| | | |
|
| | | |
|
| | | |
| | | | :
[[[[]
order accountancy calendar user catalog |
] - — = > - — = > I
|
U I I
! L 77777777777777777777 K . \ \
: | | !
| I v 1 | I !
money product | inventory |
le e = o= = 5 L __ Lo oo L .
|
| e
[! [
[: [
[! [
[L v [
| quantity |
| |
| |
e N o o ___ J
1
, \
, \
\
1 / 1y
web util The util packages is used

by almost all packages.
These dependencies have
been skipped for sake of
clarity.

Figure 3.1: Package Overview

16

3.2 User

«Singleton»
Shop

initializeShop()
getAccountancy()
setAccountancy(accountancy)
getOrderManager()
setOrderManager(orderManager)
getTime()

setTime(time)
getUserManager()
setUserManager(userManager)
getinventory()

setinventory(inventory)
getCalendar()

setCalendar(calendar)
getCatalog()

setCatalog(catalog)

Figure 3.2: Shop - Class Overview

3.2 User

To manage system accounts, Salespoint 5 has a notion of a user in the form of
the User interface. Users are managed by the UserManager, who is also an inter-
face. The implementing classes handling the persistence aspects are PersistentUser
and PersistentUserManager, respectively. Every user is uniquely identified by a
UserIdentifier, which also serves as primary key attribute for the database in the
peristent implementation. The UML model is depicted in Figure (3.3

UserCapabilities

Capabilities in conjunction with a HasCapabilityTag (Section can be used to
change the appearance of a View, depending on a users status. For example, a View for
a user having an “administrator” capability may display different content, for example
delete buttons, than for a user not having that capability. Thus, capabilities allow for
flexibility and assist in code reuse, when designing the View.

Login

To reduce code repetition, Salespoint 5 contains code to automate user log in. Using a
JSP template, a special login form is generated, which is handled by an interceptorﬂ
The interceptor verifies the user password and associates the current session with the
user using login and logoff. The session is required, because multiple users can be
logged on at the same time.

2An interceptor is a Spring concept.

17

3 Salespoint 5 Components

UserManager O Persi: Jser

add(user) update(user)
remove(userldentifier)
contains(userldentifier)
login(user, token)
logout(token) =
getUserByToken(class, token)
get(class, userldentifier)

find(class)

~ \nusen «use»/ -
T = - T
= Userldentifier =
| «use» -identifier | «use»
| 1 1 |
v
User O PersistentUser
getldentifier() password
verifyPassword(password) - — —
changePassword(newPassword, oldPassword) PersistentUser(userldentifier, password, capabilities)
addCapability(capability) M — — — — — — — — — — — — —

removeCapability(capability)
hasCapability(capability)
getCapabilities()

| UserCapability
| «use» name -capabilities 1

_________ UserCapability(name) 1.
getName()

Figure 3.3: User - Class Overview

To modify the content of the View, depending on whether a user is logged in or not,
the LoggedInTag can be used.

3.3 Calendar

The calendar is a new feature in Salespoint 5 to manage appointments and events.
Figure shows the UML model of the calendar.

Calendar is an interface that provides simple functionality to store and retrieve
CalendarEntrys. CalendarEntry is an interface to set, store and access information of
a single appointment/event. Both interfaces are implemented by PersistentCalendar
and PersistentCalendarEntry, respectively. PersistentCalendarEntry is a per-
sistence entity containing all information and PersistentCalendar manages the JPA
access.

Every calendar entry is uniquely identified by a CalendarEntryIdentifier. This
identifier also serves as primary key attribute when persisting an entry to the database.
Additionally, a PersistentCalendarEntry must have an owner, a title, a start and
an end date. The user who created the entry is known as the owner and identified by
ownerID of the type UserIdentifier.

The access of other users than the owner to a calendar entry is restricted by cap-
abilities. For each calendar entry, a user identifier and a set of capabilities are stored.
Possible capabilities are:

e READ - indicates if a user can read this entry

18

3.3 Calendar

Calendar O

add(entry)

contains(calendarEntryldentifier)
get(class, id)

find(class)

PersistentCalendar

find(class, userldentifier)

find(class, title)

between(class, start, end)
startsBetween(class, start, end)
endsBetween(class, start, end)

T
| «use»
|
2

PersistentCalendarEntry

remove(calendarEntryldentifier) === - =

I

|«use»

|

\z

CalendarEntry O
getldentifier()
addCapability(user, capability)
removeCapability(userldentifier, capability)
getCapabilities(userldentifier)
getUsersByCapability(capability)
getDescription() W — - — =
getStart()
getEnd()
getOwner()
getTitle() 1
setDescription(description)
setStart(start)
setEnd(end)
setTitle(title)
CalendarEntryldentifier |1
-Identifier

PersistentCalendarEntry(owner, title, start, end)

PersistentCalendarEntry(owner, title, start, end, description)
PersistentCalendarEntry(owner, title, start, end, description, period, count)

getRepeatCount()
getEntryList(maxEntries)
getPeriod()

setCount(count)
setPeriod(period)

1

-capabilities|0..*

-associated user

-authorisation level[

-ownerlD

«enumeration»
CalendarEntryCapability

READ
SHARE
DELETE

Userldentifier

WRITE

Figure 3.4: Calendar - Class Overview

e WRITE - indicates if a user can change this entry

e DELETE - indicates if a user can delete this entry

e SHARE - indicates if a user can share this entry with other users

Because Salespoint 5 only implements the model of the MVC pattern (see Sec-
tion [2.3)), the developer has to check and enforce capabilities in the controller.

Besides the minimum information of owner, title, start and end a calendar entry can
also have a description, which may contain more information. Periodic appointments
are also supported, by specifing the number of repetitions (count in Figure and a
time span between two appointments (period in Figure .

There are some conditions for temporal attributes of an calendar entry:

e the start must not be after the end

e the time between two repetitions of an appointment need to be longer than the

duration of the appointment, so that appointments do not overlap

19

3 Salespoint 5 Components

3.4 Quantity and Money

Quantity is used to represent amounts of anything. Three attributes allow Quantity
to specify everything: a numerical value (BigDecimal), a (measurement) unit
or metric (Metric), and a type specifying the rounding of the numerical type
(RoundingStrategy), as can be seen in Figure

Quantity objects are immutable and the class implements the Comparable interface.

Metric

definition rounding

Metric(name, symbol)

Metric(name, symbol, definition -
getNar(ne() Y) RoundingStrategy O

getSymbol() MONETARY_ROUNDING{readOnly}
getDefinition() ROUND_ONE{readOnly}

-metric

—_

round(amount)
1

Quantity | 1 ﬁl
amount 1 -roundingStrategy |

add(quantity) |
subtract(quantity)
multiply(quantity) BasicRoundingStrategy
divide(quantity) roundingStep

getMetric())
getRoundingStrategy() roundingMode

BasicRoundingStrategy(roundingStep, roundingMode)
getRoundingStep()
getRoundingMode()

Unit

N
m
20
o

@]
Z
m|

—
m
Z

Figure 3.5: Quantity - Class Overview

3.4.1 BigDecimal - Representing numerical values

BigDecimal was chosen as datatype for the amount attribute (see Figure over
float or double because of its arbitraty precision. Moreover, objects of BigDecimal
are immutable and the BigDecimal class provides operations for including, but not
limited to: arithmetic, rounding, and comparison.

20

3.4 Quantity and Money

3.4.2 Metric - What is represented

The composite type Metric contains all information pertaining to the unit or metric
of the represented object. Examples for units or metrics are: m (meter), s (second),
pes (pieces). For example consider the unit of length "meter”: represented by an
object of the class Metric the symbol would be set to "m” and the name to "meter”.
Furthermore, an object of type Metric has a description field, to explain the meaning
of the metric in detail. For the example of a meter a possible description could be
"The meter is the length of the path travelled by light in vacuum during

Convenience instances exist for euros, pieces and units, namely EURO, PIECES, and

UNIT (see Figure [3.5).

3.4.3 Rounding

Rounding is an arithmetic operation where a numberical value is replaced by another,
simpler representation. Rounding is often results in a number which is easier to
handle than the original value, for example 3.1415 instead of m, or 1.1414 instead
of V2. Also, rounding may be employed to indicate the accuracy of a computed
or measured value. For example a value is calculated to be 3.4563 but it is known
the result is only accurate to one hundredth because of measurement errors, so the
result may be rounded to 3.46. Rounding may also be used to limit the number
of significant digits, for example in statistics. The german population is rounded to
full thousands by the Federal Statistical Office and the statistical Offices of the Lénderf]

Different types of rounding exist. A number can be rounded to a specific precision,
to an (integer) multiple of a step or increment, or to the nearest available value ot of
a set of preferred values. Thus, rounding is implemented as strategy pattern, allowing
a consistent interface to be used with different algorithms. So far, the only strategy
implemented is the BasicRoundingStrategy which supports rounding to a specific
precision or rounding to a multiple of a pre-determined multiple of a step.

Rounding to precision zero is also known as rounding to integer. When doing so, five
general strategies can be employed:

e up - result is the next integer, away from zero

e down (also known as “truncation”) - result is the next integer, towards zero
e ceil - result is the next integer, towards positive infinity

e floor - result is the next integer, towards negative infinity

e half - result is the nearest integer

All strategies except the last yield unambiguous results. If a number ends in x.5 and
is rounded to the nearest integer two results exist: x and x + 1, since both have the

3http://wuw.statistik-portal.de/Statistik-Portal/en/en_zs01_bund.asp

21

a time interval

http://www.statistik-portal.de/Statistik-Portal/en/en_zs01_bund.asp

3 Salespoint 5 Components

same absolute difference to x.5. To resolve the ambiguity, tie breaking rules have to be
employed. The first four strategies to round integers (up, down, ceil, floor) can also be
used for tie-breaking. Additionally, more sophisticated methods may be employed, for
example:

e even - result is the nearest even integer
e odd - result is the nearest odd integer
e stochastic - result randomly chosen to be x or x + 1

e alternate - using strategies up and down intermittently

A technique called dithering, which is related to stochastic rounding tie-breaking rule,
is used when instead of the accuracy of single rounding operation is less important than
the distribution of rounding results across a set of values. Dithering is often used in
quantizing image or audio data. For example, if a continous stream of values of approx-
imately 0.88 should be rounded to zero digits after the radix delimiter, that is to integer,
would result in contiuous 1 or 0 result, depending on the strategy. Using dithering, a
number is rounded up (or down) with the probability of the fraction. In our example,
this would result in a stream containing 88% ones and 12% zeroes, randomly distributed.
A similar technique, which reduces the average error, is called “error diffusion”.

As mentioned earlier, only one strategy is implemented as of yet, namely
BasicRoundingStrategy. Instantiating an object of this strategy, it is possible to spe-
cify either a rounding step or a precision in digits after the radix delimiter. Internally,
the following algorithm is used to round numbers:

x = round(q/m) *m

where ¢ is the number to be rounded, m is the increment or rounding step, x is the
result, and round is a rounding strategy to round the quotient ¢/m to an integer value.

When the number of digits after the radix delimiter are specified, the appropriate
rounding step is calculated as follows:

St@p = 10digits = ~digits

For example, rounding a number to four digits after the radix delimiter is equal to
rounding the number to the next (integer) multiple of 0.0001.

Rounding to a nearest step or increment, can be used if something is sold in fixed
quantities. For example, if an item is sold in packs of 50, and someone punches in 40,
you will have to round up to 50. So your rounding step is 50. Another example is
material, which is sold by the meter or yard. You have to round the amount specified
by your customer accordingly. Of course, a rounding step can be smaller than 1, i.e. 0.25.

Two convenience rounding strategies exist so far: RoundingStrategy.MONETARY

rounding with four digits after the decimal delimiter and rounding towards zero, and
RoundingStrategy.ROUND ONE with zero digits after the decimal delimiter and also

22

3.4 Quantity and Money

rounding towards zero.

Rounding strategies which are not yet implemented, but may be interesting to
Salespoint 5 users and developers are scaled rounding, rounding to nearest value of a pre-
determined set and a sum preserving rounding strategy. Implementing these strategies
may require extending the RoundingStrategy interface.

Scaled rounding is used to round values on a logarithmic scale. Near zero a high
precision is required, for example using three digits after the radix delimiter. But
farther away precision requirements drop, so only one digit after the radix delimiter
may suffice. Thus, the precision to which is rounded depends on the magnitude of the
value to be rounded.

Rounding to nearest preferred value is used, when a calculated value is rounded to
the nearest standard value. Examples of preferred values are the E series, the Renard
series, powers of two, metric paper sizes and pen sizes, tuning systems in music, or film
speed, aperture sizes and shutter speeds in photography. E series are most commonly
used in electronics industry for resistor, capacitor, and inductor Valuesﬁ In computer
science, powers of two are often used as preferred values for sizes. Paper is sized so that
neighboring dimensions have a ratio of \@ This also applies for pen sizes, so that a
pen size is available for a scaled drawing.

Sum preserving rounding is necessary if, for example for every item on an invoice the
tax is explicitly listed. The tax for each item has to be rounded, introducing a rounding
error. When the taxes for each item are summed up, the sum has to match the tax
calculated for the summed prices of all items. This is seldomly the case, so the rounding
of the individual tax has to be fitted. The method of least squares may be used to
achieve fitting. Another algorithm which may be used is minimizing the round-off error.

3.4.4 Voney - A usecase for Quantity

An object of the class Money is used to represent an amount of currency. The following
paragraphs detail the intended use, internal modelling and implementation of Money.
The UML model is given in Figure [3.6]

A Money object can be instantiated by passing the numerical value as con-
structor parameter. In this case, the metric Metric.EURD is used, as well as
RoundingStrategy.MONETARY for the rounding strategy attribute.

For other currencies, a Metric parameter can be passed to the constructor along with
a numerical paramter. However, conversion between currencies is not supported, as it
was not deemed necessary.

The rounding strategy cannot be overridden. Internally, Money objects use four digits
after the decimal delimiter for arithmetic operations to minimize the rounding error.
The toString() method, however, limits the output to the expected two digits after
the decimal delimiter and appends the symbol of the associated Metric.

Two convenience instances exist: Money.ZERO, representing <€0,00, and
Money .OVER9000, representing an amount greater than €9000,00.

41EC 60063
51SO 216

23

3 Salespoint 5 Components

Money

ZERO

Money(amount)
Money(amount, metric)

v
Quantity Metric

amount PIECES

add(quantity) -metric _LEJL'\J“RTOS

subtract(quantity) 1 1 name

multiply(quantity) symbol

divide(quantity) definition

getMetric()

getRoundingStrategy() Metric(name, symbol)
Metric(name, symbol, definition)
getName()
getSymbol()
getDefinition()

Figure 3.6: Money - Class Overview

3.4.5 Unit - Representing persons or other integraﬂ items

To represent integral items conveniently, the objects of class Unit can be used. The
rounding strategy is fixed for all instances to RoundingStrategy.ROUND_ONE (Figure
and Metric.PIECES (Figure is used as metric. Convenience instances for amounts
of zero, one and ten unit(s) exist (Unit.ZERO, Unit.ONE, and Unit.TEN; see Figure.

3.5 Product

Salespoint 5 is intended as framework for point-of-sale applications. The items for
sale are called “products” and represented by instances of classes who implement the
Product interface. A general overview of the Salespoint 5 products subsystem is given
in Figure[3.7 To represent different kinds of products, PersistentProduct can be sub-
classed; see Section [2.5.4] for more information. PersistentProducts are aggregated by
PersistentCatalog (see Section [3.6).

Products are supposed to be an abstraction, like an item on display or a picture
in a catalog. ProductInstances are used to represent the actual item you get, when
you a buy a product. Products are identified using a ProductIndentifier, whereas
ProductInstances are identified by a SerialNumber. ProductInstances can be
thought of as identifiable instances of a certain product, which are identical apart from
their SerialNumber.

Swhole-number

24

3.5 Product

Product 6]
getldentifier() —
getPrice() PersistentProduct
getName() name
addProductFeature(productFeature) price
removeProductFeature(productFeatureldentifier) categories
— - getProductFeature(productFeatureldentifier) = - - =
| getProductFeatures() PersistentProduct(name, price)
addCategory(category)
| removeCategory(category)
| getCategories()
| 1 0.*
|
| F—— - == - = = = = = = = = = > —
| «use» 1
|
| | -productidentifier | 1
| | 1
| 1
Productlinstance O
| getProductldentifier() name
| getProductFeatures() price
getSerialNumber() —
| getPrice() PersistentProductinstance(product, productFeatureldentifier...)
| <= — — -getName()
|
|
| T
| | 1
| | -serialNumber| ~ SerialNumber
| | -productFeatures |1..*
| | ProductFeature
| | featureType
ProductFeatureldentifier «use» value
| | price
| | percent
1 :
g " ProductFeature(featureType, value, price, percent)
| productFeatureldentifier | create(featureType, value 0.
| - = — >createf featureType, value, price -productFeatures
create(featureType, value, percent
| getFeatureType()
getValue()
| 1 getPrice()
| getPercent()
«use» getldentifier()
|
| ™
|

Figure 3.7: Product - Class Overview

25

3 Salespoint 5 Components

To conviently handle products, which are essentially the same but differ in cer-
tain aspects, such as color or size Salespoint 5 has the concept of a ProductFeature.
ProductFeatures are specified by a featureType, for example color or size, and a cor-
responding value, for example “black” or “blue” for the feature “color”. Additionally
a ProductFeature may reference a Money object, to describe an increase or decrease in
price of a Product, if it has a certain ProductFeature. Alternatively, a change in price
can be expressed as a percentage of the price of the Product.

An example: A class Shoe extends PersistentProduct and has a
Set<ProductFeature> containg the wvalues 36, 37, 38, 39, 40, 41, 42, 43,
44, 45 of the productType “size”. The set of ProductFeatures declared in
PersistentProduct defines, which ProductFeatures can be aggregated by the
corresponding ProductInstance. An instance of Shoe represents a specific
model a vendor might have. Additionally, a class ShoeInstance may sub-class
PersistentProductInstance. An instance of ShoeInstance represents a specific
pair of shoes. ProductInstance also aggregates ProductFeatures, but in contrast to
Product exactly one ProductFeature is allowed for any featureType. In other words:
a shoe has a size - exactly one size.

Not all items might by sold by number. Other units, such as litres, kilo grams, or
meters are conceivable. To accomodate for the sell of such items, the MeasuredProduct
interface was created. Implemented by PersistentMeasuredProduct, a
MeasuredProduct is specified by a name, price and quantity available. When an
amount from a MeasuredProduct is removed or added, the price attribute is automat-
ically modified to represent the total monetary value of the MeasuredProduct. The
getUnitPrice () method can be used to access the price of a single unit.

MeasuredProducts bought by customers are represented by classes implementing the
MeasuredProductInstance interface. An instance of a MeasuredProductInstance
stands for a certain amount of a product. When instanciating an object of a class
implementing MeasuredProductInstance, the corresponding MeasuredProduct has to
be known. Furthermore, the amount of the product represented by the new instance
of MeasuredProductInstance is removed from the MeasuredProduct instance. If an
instance is to be created, which would remove a higher quantity than is available in the
MeasuredProduct, the instantiation fails with an exception.

3.6 Catalog

The Catalog interface was designed to manage Products and ProductFeatures in the
system. It provides functionality to add, remove, and find Products. Products can be
searched by their name or category. Products and ProductFeatures are more closely
described in Section 3.5

The PersistentCatalog is an implementation of the Catalog interface. Addition-
ally PersistentCatalog provides an update ()-method to update and merge existing
PersistentProducts to the databasel[]

Tupdate () to the interface. Misuse add () for updates? this seems inconsistent.

26

3.7 Inventory

Catalog O PersistentCatalog
add(product) update(product)
remove(productldentifier) addAll(products)
contains(productldentifier) beginnCommit(entityManager)
get(class, productldentifier) b — — — —

find(class)
findByName(class, name)
findByCategory(class, category)

| «use» | «use»

| |
i \z
Product O PersistentProduct

getldentifier() name
getPrice() price
getName() categories
addProductFeature(productFeature) - -
removeProductFeature(productFeatureldentifier) “— — — — — |PersistentProduct(name, price)

getProductFeature(productFeatureldentifier)
getProductFeatures()

addCategory(category)

removeCategory(category)

getCategories()

Figure 3.8: Catalog - Class Overview

The find () methods request the database in the form of CriteriaQuerys which will
be processed by JPA and results are returned in the form of Iterables. The reason for
this is to make returned objects immutable without making it difficult to iterate over
these results.

3.7 Inventory

An inventory is a place, where products are stored. In Salespoint 5, an abstract repres-
entation if the Inventory interface and its implementing class PersistentInventory.
The interface and declares methods to add, remove and find products. Because
an inventory contains specific product instances, PersistentInventory aggregates
PersistentProductInstances.

PersistentProductInstances can be retrieved from PersistentInventory by spe-
cifying a SerialNumber or a ProductIdentifier. A SerialNumber is used to reference
a specific ProductInstance. A ProductIdentifier identifies a Product uniquely, thus
all PersistentProductInstances of the PersistentProduct specified by the supplied
ProductIdentifier are returned. Additionally an Iterable<ProductFeature> can
be supplied to the find ()-method along with a ProductIdentifier to retrieve all in-
stances of a product, where the ProductFeatures match exactly those specified. Match-
ing a set of ProductFeatures against a PersistentProductInstance is hard to express
in JPQL or Criteria Queries (see Section . Therefore, only the ProductIdentifier
is used to build a Criteria Query, which is executed on the database. Selecting only those

27

3 Salespoint 5 Components

Inventory O Persistentinventory

add(productinstance) PersistentInventory()
remove(serialNumber) PersistentInventory(entityManager)
contains(serialNumber) addAll(productinstances)
get(class, serialNumber) b - — — — newlnstance(entityManager)
find(class)
find(class, productldentifier)
find(class, productldentifier, productFeatures)
count(productldentifier)
count(productldentifier, productFeatures)

I T

| «use» | «cuse»

| |

2 \/4

Productinstance O PersistentProductinstance
getProductldentifier() name
getProductFeatures() price
getSerialNumber() < - - — — - —
getPrice() PersistentProductinstance(product, productFeatureldentifier...)
getName()

Figure 3.9: Inventory - Class Overview

PersistentProductInstances which match the specified ProductFeatures is done in
Java code.

3.8 Accountancy

The accountancy package contains functionality supporting book keeping.
AccountancyEntry is a representation of an accounting entry. Accountancy ag-
gregates AccountancyEntrys. Every AccountancyEntry is uniquely identified by an
AccountancyEntryIdentifier.

PersistentAccountancyEntry implements AccountancyEntry and serves as per-
sistence entity, while PersistentAccountancy implements Accountancy and provides
transparent access to the JPA layer. AccountancyEntryIdentifier is used as primary
key attribute, when entities are stored in the database.

By implementing and sub-classing the AccountancyEntry interface, the notion of
different accounts, as known from double-entry bookkepping, can be realised. As can
be seen in Figure|3.10, PersistentAccountancyEntry is sub-classed to create a second
“account” used to store payment information, namely ProductPaymentEntry.

Payment information also includes a user identifier referencing the buyer, an order
identifier referring to the Order which was payed, and a PaymentMethod describing the
money transfer. The attributes are named userIdentifier, orderIdentifier, and
paymentMethod respectively. The inheritance hierarchy of PaymentMethod is depicted
in Figure [3.11

To create a new account, AccountancyEntry has to be sub-classed. Every (persisted)
object of such a class belongs to the same account. Accessing per-account entries is

28

3.8 Accountancy

Accountancy O PersistentAccountancy
add(accountancyEntry) PersistentAccountancy()
get(class, accountancyEntryldentifier) addAll(accountancyEntries)

find(class)
find(class, from, to)

find(class, from, to, period) = - = - =
salesVolume(class, from, to, period)
I I
| «use» | «use»
| |
2 2
AccountancyEntry @) PersistentAccountancyEntry
getldentifier() PersistentAccountancyEntry(value)
getDate() PersistentAccountancyEntry(value, description)
getValue()
getDescription() == = = =
1
-Identifier (1
AccountancyEntryldentifier ProductPaymentEntry
userldentifier
orderldentifier
paymentMethod
ProductPaymentEntry(orderldentifier, userldentifier, amount, description, paymentMethod)
getUserldentifier()
getOrderldentifier()
Figure 3.10: Accountancy - Class Overview
PaymentMethod
description
PaymentMethod(description)
PaymentCard Cash Cheque
cardAssociationName accountName
cardNumber accountNumber
nameOnCard chequeNumber
expiryDate payee
billingAdress dateWritten
validFrom bankName
cardVerificationCode bankAdress
issueNumber bankldentificationNumber
CreditCard DebitCard
creditLimit dailyWi -
iy . ailyWithdrawalLimit
dailyWithdrawalLimit y

Figure 3.11: Payment - Class Overview

29

3 Salespoint 5 Components

facilitated by specifiying the desired class type when calling get () or find () methods
of Accountancy as explained in Section

3.9 Order

An Order can be considered as a sheet of paper which basically consists of lines,
each representing an ordered product. An order can be uniquely identified by an
OrderIdentifier.

Every product of an order is stored in a separate OrderLine. An OrderLine in
turn is uniquely identified by an OrderLineIdentifier. An OrderLine contains all
information to identify a ProductInstance (see Section . A ProductInstance is
identified by a ProductIdentifier, and an optional set of ProductFeatures.

A ChargeLine represents additional costs or discounts and can be applied to an
OrderLine or an Order. For example, ChargelLines can be used to handle special taxes
or handling fees. A ChargeLine is uniquely identified by a ChargelLineIdentifier.

Orders are lifecycle-objects. The lifecycle covers four states which are defined by
enumeration type OrderStatus. The lifecycle state cannot be arbitrarily changed,
but follows a fixed scheme and is represented as field orderStatus in the class
PersistentOrder. State transistions are automatically carried out when certain meth-
ods are called on an Order object, for example cancelOrder ().

As you can see in Figure [3.13] a PersistentOrder can only be modified in state OPEN.
PAYED, CANCELLED and COMPLETED Orders are immutable. Calling the payOrder ()
method changes the state and calls the accountancy to create a ProductPaymentEntry
Ordered objects will only be removed from inventory when the completeOrder ()
method is called. COMPLETED is one of the final states and it is not possible to change
the state of such orders.

Completing an order causes product instances to be removed from the inventory.
Because product instances may not be present anymore in the inventory, or their number
may not be suffice to fulfill an order, completing an order requires special attention. To
handle these situations, the OrderCompletionResult interface was introduced. First of
all, three OrderCompletionStatus are possible:

e SUCCESSFUL: The order was completed successfully, and all products were removed
from the inventory.

e SPLIT: Some products could be found in the inventory and were removed.

e FATLED: An error from which recovery is impossible occured.

When completing an order results in the SPLIT status, the original order is splitted:
all product that could be removed from the inventory are kept in the original order.

30

3.9 Order

(passpiQIaqunu ‘sainyeadionpoud Jaynuapjionpold)auriapiQusisisiad
(saanyeaqionpoud ‘Jaynuapjionpoid)aurjiepiQludlsisiod

(pasapiQIaqinu “Jaynuapyionpoid)auriepiQlualsisiad

(Jaynuappionpold)auriepiQuslsisiad

()oaweNIonpoid1eh

Jaynuaplauriebieyd

| |4ausp|-

aweNonpoud
ooud
paJapiQlaquinu
sainjea1onpoid
Jaynuapjonposd

QuI14opIOIUBISISIAd

.0 | seurjebireyo-

()uonduosaqieb

()eoudiob

()J1eynuapjieb

(Juawwod ‘uonduosep ‘Junowe)aurjebreydiuslsisiod
(uonduosap ‘yunowe)aurjabreyniusisisiod

uonduosap
Junowe

aurjabieyn

.0 | saurjebieyo-

(0] 3

(Juedos!
()pejedwods!

0| sauryiapio-

(Jpajpoueds!
()pakeds!
(uawAed ‘Jaynuappiasn)iapiQlualsisiod

SnejsIapIo
Jsynusppiesn
JswAed

19pIOIUBISISId

A
|
|

«@sN» |

(JapI0)orepdn
(soBeUBNAMUS)1obeUBN\IBPIOIUSISISIO]
()1oBeuepI9pIOIUBISISIad

J19beueIapIOIULISISIAd

asv4d
H3aQ4OLI1dS
1IN4SS300NS
snjejsuonajdwoniaplo
«uoneIawNUS»
A
|
«@sn» |
l
()s@ouejsujpanowayioh <
()1epiouds
(roegjios
()smeisieb

Jynsaguonajdwoiapio

«@SN»

| [Jo1ynuapl-
()aoudieb
()patepiOlaquinnieh
()seanjeagionpoidiob— — —
()4aynuapionpoidieb «3SN»
(uoynueppod 13I1IUBp|aUITI3PIO
O aulepi0
A
«asn»
|
- T T T T
|
: [
| a37730NVO
a3L13dnoo
| a3Avd
| N3dO
snjeisiapio
JaynuapLpIO | «uolelawnua»
K | A
\ | /
«asn» \ | / «asn»
\ | /
()pareaipareqioh
()dopiohed

()ooudsauripabireyieb
()eoudsauripalapiOleh
()a0ude101106

()JepiQleoued

()1op10e18|dwod

()snieisiepiOreh

()saurjebireynieb

(Jayuaplauriabieyo)aurjebreypanowas
(aurjabireyo)aurjabreypppe
()oynuappeb

()saurepiOleb

(Ja11IUBP|BUITISPIO)BUITIBPIOBAOWDI
(auriapIo)aurjiepiOppe

19pI0

A
|

«@sn> |

(J8YynuapP|IaSN “0} ‘W) ‘SSEJD)pul).
(Joynuapylasn ‘ssefo)puly

(01 ‘wouy ‘ssed)puly

(snyeigIaplo ‘ssejo)puly,

(J8YNuaP|IaPIO)SUIRIUOD

(Jauaplieplo ‘ssejo)1ab

(18p.0)ppe

1abeuep19pIO

1ew

Order - Class Overvi

Figure 3.12

31

3 Salespoint 5 Components

OPEN

.—» entry / initialize order payOrder()

do / edit order

cancelOrder()

CANCELLED | \ ' PAYED |

entry / make order immutable and create an accountancyEntry
do / process order

entry / make order immutable J

COMPLETED
entry / remove ordered objects from inventory

completeOrder()

Figure 3.13: Order - Lifecycle

The original order’s state is changed to COMPLETED. All products which could not be
removed from the inventory are transferred to a second order, the split order. The split
order is set to PAYED. This scheme allows for the Controller to implement whatever logic
necessary: placing a product on back order, splitting the order into multiple deliveries,
or cancelling the order. It is paramount to understand, that OrderCompletionResult
does not make a decision, but prepares for every decision, the business logic may come to.

The OrderManager aggregates Orders. The implementations PersistentOrderManager,
PersistentOrder, and PersistentOrderLine are used to persist, update, find and
remove orders to/from the database. In Order aggregated objects, like OrderLines and
ChargeLines will also be persisted, updated or removed with the Order object.

32

4 Collaboration

Salespoint 5 is more than just a collection of classes and interfaces. It also provides
processes between packages that are triggered automatically to facilitate working. This
chapter draws attention to those dependencies between packages and describes how they
collaborate.

Figure [3.1] illustrates the main dependencies between Salespoint 5 packages. As can
be seen nearly all packages are interdependent.

The central class that connects all features in Salespoint 5 is the Shop. The most
packages access this class to communicate with other packages. Therefore the Shop
contains all interfaces which are global connected. This class should also be the first
point for software engineers to request the individual parts of Salespoint 5.

Another package that collaborates with nearly all packages is the Order package.
OrderLines using interfaces from Product package to identify product instances and
calculate their prices. The Catalog package is used to check whether the catalog con-
tains added products. Orders are also associated with the UserManager, to receive
information about involved users.

Completed Orders will communicate with the Inventory (via Shop class) to remove
considered product instances.

Before completion, Orders have to be payed. An Order which changed its status
to PAYED will automatically access the accountancy and create the corresponding
AccountancyEntry which represents that payment.

Catalogs and Inventorys also work closely together with all classes in Product
package. There are a lot of other packages and classes that provide structures which
are used in Salespoint 5 like the Money and Quantity packages. After all there are
much more smaller collaborations in Salespoint 5, but the above described are the most
important ones.

33

Bibliography

[ANO3] Jim Arlow and Ila Neustadt. Enterprise Patterns and MDA: Building Better
Software with Archetype Patterns and UML. Addison-Wesley, 2003.

[ecla] http://www.eclipse.org/eclipselink/api/2.3/index.html.

[eclb] http://www.eclipse.org/eclipselink/.

[hib] http://www.hibernate.org/.

[HVE] Anders Hejlsberg, Bill Venners, and Bruce Eckel. The Trouble with Checked
Exceptions. http://www.artima.com/intv/handcuffs.html.

[jod] http://joda-time.sourceforge.net/.

[jpa] http://jcp.org/aboutJava/communityprocess/final/jsr317/index.html.
[spr] http://www.springsource.org/.

[swi] http://java.sun.com/javase/technologies/desktop/.

[swt] http://www.eclipse.org/swt/.

[top] http://www.oracle.com/technetwork/middleware/toplink/overview/
index.htmll

35

http://www.eclipse.org/eclipselink/api/2.3/index.html
http://www.eclipse.org/eclipselink/
http://www.hibernate.org/
http://www.artima.com/intv/handcuffs.html
http://joda-time.sourceforge.net/
http://jcp.org/aboutJava/communityprocess/final/jsr317/index.html
http://www.springsource.org/
http://java.sun.com/javase/technologies/desktop/
http://www.eclipse.org/swt/
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html

	Preface
	Typographic Conventions
	Introduction

	Technical Background
	JPA - Java Persistence API
	Joda Time
	Spring
	Software Architecture of a Salespoint 5 Application
	General Design Aspects

	Salespoint 5 Components
	Shop
	User
	Calendar
	Quantity and Money
	Product
	Catalog
	Inventory
	Accountancy
	Order

	Collaboration
	Bibliography

